
International Journal of Scientific & Engineering Research, Volume 7, Issue 9, September-2016                                                                                        116 
ISSN 2229-5518 

IJSER © 2016 
http://www.ijser.org 

 

How Data Hazards can be removed effectively 
 

Muhammad Zeeshan, Saadia Anayat, Rabia and Nabila Rehman 
 

Abstract—For fast Processing of instructions in computer architecture, the most frequently used technique is Pipelining technique, the 
Pipelining is consider an important implementation technique used in computer hardware for multi-processing of instructions. Although 
multiple instructions can be executed at the same time with the help of pipelining, but sometimes multi-processing create a critical situation 
that altered the normal CPU executions in expected way, sometime it may cause processing delay and produce incorrect computational 
results than expected. This situation is known as hazard. Pipelining processing increase the processing speed of the CPU but these 
Hazards that accrue due to multi-processing may sometime decrease the CPU processing. Hazards can be needed to handle properly at 
the beginning otherwise it causes serious damage to pipelining processing or overall performance of computation can be effected. Data 
hazard is one from three types of pipeline hazards. It may result in Race condition if we ignore a data hazard, so it is essential to resolve 
data hazards properly. In this paper, we tries to present some ideas to deal with data hazards are presented i.e. introduce idea how data 
hazards are harmful for processing and what is the cause of data hazards, why data hazard accord, how we remove data hazards 
effectively. While pipelining is very useful but there are several complications and serious issue that may occurred related to pipelining i.e. 
load delay, branch delay data dependence, etc. Performance of pipelining technique is relay on data dependency between instructions and 
Data dependency some time generates pipeline hazards between instructions. In order to effectively deal with data hazards we also 
discuss pipelining complications like data dependence. Data dependence is a state where one instruction is relay on the data of preceding 
statement. We clearly impose these conditions of wrong result complication, data hazards and data dependence. 

Index Terms— Data Hazard, Pipelining, Race Condition, Forwarding  

——————————      —————————— 
 
1 Introduction 

ipelining technique ensures fast processing of instructions 
because there is a continuous and overlapped movement of 
multiple instructions so execution is done in fewer cycles. 

Pipeline architecture is a series of sub stages and these stages are 
connected with each other where some work is done at each stage, 
each stage is responsible for predefine tasks to be executed and the 
whole work is not done until it has passed through all the stages of 
pipeline. Several problems can affect the performance of pipelining 
technique such as hazard which is any source of potential damage or 
risk. It is a situation or condition that creates or increases the 
chances of loss. In the same way, pipelining hazard can cause loss 
in performance efficiency. Condition that can result in incorrect 
execution of instructions is known as pipeline hazard. As we know 
that instructions in the pipeline are being executed in parallel and 
when an instruction or set of instruction is rely upon the result of 
previous instruction that is under process and not yet complete by 
the CUP, Although there exist three type of pipeline hazards one of 
them is known as data hazards which can be defined as hazards that 
occur when some time an instructions access some invalid data 
value of previous instruction, previous instruction cannot update 
that time or update letter.  
 

1.1 Data Hazard Examples: 
Following is a simple example to explain data hazard b/w two 
instructions. 
ADD 5, R3, R4
SUB R7, 5,  R6

R
R  

There exists a data hazard b/w these two instructions. The Register 
R5 is processes in clock cycle 6 there for instruction SUB cannot 
proceed beyond stage 3 (Instruction de decode/operand fetch) until 
ADD instruction leaves the pipeline. This example refers to RAW 
or read after write data hazard where 2nd instruction tries to read the 
sources (register) before 1st instruction writes to it. SUB instruction 
depends upon the result of R2 and it cannot proceed further or 
access until ADD instruction completes its cycle. Data hazards can 
negatively influence pipelining performance if not handled properly. 
Performance would be slow down and processing will become more 
time consuming that is why it is very important to deal with data 
hazards properly. Ignoring potential data hazard can result in race 
condition also known as race hazard which refers to a situation or  
Condition where several instructions access and manipulates the 
same data concurrently and the output of manipulation depends 
upon the order in which the access takes place. For the protection 
against race condition, proper synchronization is required. In order 
to handle or remove data hazards properly we need to find out the 
reasons for the occurrence of hazards only then we can deal with 
data hazards properly. In this paper, we will discuss about 
complications related to pipelining, pipeline data hazards, Impact of 
data hazards on pipelining performance, reasons behind occurrence 
of data hazards and how we can effectively remove data hazards. 
This paper is divided into different sections. After the brief 
introduction a review of pipelining and data hazard related work is 
given in section 2. In section 3, reasons for occurrence of data 

P 

———————————————— 
• Muhammad Zeeshan is with Department of Computer Science & 

Information Technology as a student of MSCS at VU, Lahore, Pakistan. He 
is currently an employ of FCSC Peshawar, under Ministry of Defence 
Islamabad,Pakistan E-mail:ms150400558@vu.edu.pk  

• Saadia Anayat is with Department of Computer Science & Information 
Technology as a student of MSCS at VU, Lahore, Pakistan. E-
mail:ms150401012@vu.edu.pk  

• Rabia is with Department of Computer Science & Information Technology 
as a student of MSCS at VU, Lahore, Pakistan. E-
mail:ms150400912@vu.edu.pk 

• Nabila Rehman is with Department of Computer Science & Information 
Technology as a student of MSCS at VU, Lahore, Pakistan. She is 
currently working as a Computer Science Teacher in Punjab School 
Education Department Dist. Khanewal E-mail:ms140400059@vu.edu.pk 

IJSER

http://www.ijser.org/
mailto:ms150401012@vu.edu.pk
mailto:ms150400912@vu.edu.pk
mailto:ms140400059@vu.edu.pk


International Journal of Scientific & Engineering Research, Volume 7, Issue 9, September-2016                                                                                        117 
ISSN 2229-5518 

IJSER © 2016 
http://www.ijser.org 

 

hazards are highlighted along with the ways to remove or resolve 
those data hazards effectively. Impact of data hazards on pipelining 
performance is also discussed in the form of comparison of 
pipelining with and without data hazards to clarify that how much it 
is important to remove data hazard for fast execution of pipeline. 
Last section 4, contains conclusion and references. 

2 RELATED WORK  
Pipelining is a mechanism where multiple workloads is distributing 
over multiple stages and perform exactly in pipeline order. One is 
work is in next stage and till not completed next work is enter into 
expectation pipeline nest stage. In the pipelining is multiple 
instructions can be executed at the same time by performed in 
multiple stages [12] explains that pipeline execution of instruction is 
a technique in which there is overlapping of multiple instructions at 
the same time, one instruction is process at next pipeline till not 
completed next instruction enters into first pipeline and that process 
increases instruction execution throughput, in the parallel execution 
of instruction the result of previous executed instruction is used into 
next one instruction- pipelining concepts increase system 
throughput but it may also some time become the reason of wrong 
result and affect performance-no of instructions processed per 
second and results in fast processing but there are some risky 
situations or hazards which not only affect performance but also 
may cause incorrect computation results. 

2.1 Pipeline example: 
Because pipeline is also use in natural things so we take the 
example of natural work, we took the example of Laundry. We have 
four workloads: A, X, Y, and Z. there are four laundry operations: 
Wash, Dry, Fold and place into Drawers. Every operation takes 30 
minute to complete its work.      

 
Diagram 1: Sequential Laundry 

If laundry work is take complete into sequential order first work 
load complete its work in two hours. As laundry start at 6PM so at 
time of 8PM next work load start and it also takes two hours to 
complete its four tasks like wash, dry, folding and place into drawer. 
Every stage takes 30 minute so four work load complete at 2AM 
mean whole laundry work takes 8 hours. Now we perform that work 
into pipeline order. 

 
Diagram 2: pipelined laundry 

In the pipelined laundry four tasks of single work load are 
performed into pipelined order one tasks is done and entered into 
next stage, 2nd load start its 1st task like load A starts its 1st tasks of 
wash at 6PM it complete at 6:30PM and entre into next stage of dry 
that time next load X is entered into pipeline and use wash. When 
load a complete 2nd task of dry it enter into next stage so load X 
enters into dry phase so that process works in pipeline order. In 
pipelined order whole laundry takes 3.5 hours for four work load. 
So increases the throughput. In the pipeline execution may 
sometime occurs  unacceptable condition named hazard, Data 
hazards are one of the three types of hazards that occur in pipelining 
i.e. structural hazards, control hazards and data hazards. During its 
clock cycle the hazards prevent the next instructions in the pipeline 
from being executed and minimize the ideal speedup of 
performance achieved by pipeline execution technique. Newly 
research on pipeline introduce there are three major execution stages 
where data hazard occur and those stages are as follows 

2.2 RAW (Read after Write) dependence 
In the pipeline the unrealistic situation where execution of 
instruction refers to a result of the next instruction, that is under 
execution or updated later. If there are two instructions   and 
Instruction I occur before instruction II then RAW can refer to a 
situation where instruction II tries to read source register before 
instruction I writes to it although the source register of one 
instruction is destination register of other register. 

I

II

For Example: instruction  tries to read operand
before instruction  writes it; 
I : ADD r10, r2, r3  
II :SUB r6, r10, r3

 

 
Diagram 3: Read after Write 

2.3 WAR (Write after Read) anti-dependence 
It is a situation that occurs when instruction II tries to write a 
destination before instruction I reads it. It occurs due to concurrent 
execution of instructions. It is also called Name dependence 
(renaming). For example 

I :SUB r6, r10, r3  
II : ADD r10, r2, r3

 
Diagram 4: Write after Read 

2.4 WAW (Write after Write)   

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 7, Issue 9, September-2016                                                                                        118 
ISSN 2229-5518 

IJSER © 2016 
http://www.ijser.org 

 

It is a situation that occurs when an instruction tries to write an 
operand before the first instruction writes it. This kind of hazard can 
also occur due to concurrent execution of instructions. For example  

I :  SUB r10, r4, r3  
II : ADD r10, r2, r3

 

 
Diagram 5: Write after Write 

In this example it may not calculate inconsistence result 
but it is a write after write hazard.  

2.5 RAR (Read after read)  
This situation occurs when one instruction read and operand before 
that other instruction read it. But that situation is not a hazard 
because register value is not changed. 

  
Diagram 6:Read after Read 

According to [13] incorrectly read, written or overwritten data give 
way to data hazards occur. According to their work related to 
pipelining hazards many other hazard occur when instruction 
depends/use the result of other instruction that are under processing 
of still under process at other processor or other pipeline stage, Due 
to scheduling failure instruction try to access data that is not 
available that time i.e. sometime instruction is access information 
too early before data is available in the destination register or some 
time instruction access data too late after it had been overwritten in 
the destination register. Data hazards influence the performance of 
pipelining. Pipelining performance is dependent upon data 
dependency b/w instructions. These dependency b/w instructions 
impose data hazards which can put negative impact on overall 
performance of the system. 

2.5 Impact of Data Hazards on Pipelining Performance 
A miner delay in one pipeline or one instruction effect on overall 
performance of the system, because complete pipeline procedure 
relay on the result of the other instruction as will if one is late so 
other instruction may wait for its results. Pipelining performance 
can be negatively affected due to data hazards because data hazards 
occur when data is read, written or overwritten incorrectly this in-
correction in data can cause delay in processing and produces 
incorrect results. Thus overall performance efficiency becomes slow 
due to hazard. With pipelining, we cannot start instruction one clock 
earlier since it is already in pipeline mean instruction is under 
process in other pipeline as will. When data hazard occurs then an 
instruction cannot access required data because the previous 
instruction has not computed or stored it, sometime data hazard 
occur in very critical situation one running instruction is not till 

commit next one is try to use this result in its execution. More there 
are chances of data hazards more negative impact on performance 
will be also think able because pipeline become useless if it may not 
give desire performance. Many instructions that a processor is able 
to run or execute parallel with pipelining, instructions are IF 
(Instruction fetch), ID (Instruction decode), OF (operand fetch), 
Execution of instruction or ALU (Arithmetic Logic Unit) operation, 
Memory access and Register write Register Rewrite. These all 
stages are interconnected with one to the next stage to make 
complete pipe, performance of each stage is very important for other 
stage because each stage is depend on other result and execute in 
parallel. In the pipeline procedure instructions comes at one end of 
pipeline and process through the each stage of the pipeline and exit 
at other the end. So if any kind of data hazard or any other kind of 
hazard exists or occurs during pipeline execution then it would 
affect the normal flow of instructions processing and it may cause in 
incorrect computations of final result. 

2.6 Pipelining complications: 
According to [4], there can be several complications related to 
pipelining and those complications are listed here. 

2.6.1 Data dependence 
It is occurs when an instruction are relay on other instruction results 
like in one stage instruction uses the result of an instruction that is 
under processing  in previous stage, that is call Data dependence. 

2.6.2 Branch delay 
In pipelining some time branches cause many problems for 
processors that work in pipelined order. Because before testing the 
branch condition it is too much difficult to predict whether a branch 
will be taken on that stage or not. If branch is not taken we can 
insert stalls or NOP instructions after the branch instruction so it one 
cycle delay is pass-through. 

2.6.3 Slow Stage 

it is a big complication in pipelining if one stage is processing or 
executing instruction too much slow speed that effect all other faster 
stage of the pipeline.   

2.6.4 Load delay  

The time that is used by loading the value into register that is 
currently used by the next instruction. These pipelining 
complications decrease overall performance, causes reduction or 
delay in processing or may cause production of incorrect results. 

3 ANALYSIS 
We will discuss the reasons behind the occurrence of data hazards 
and effective ways to remove data hazards effectively. We will also 
compare pipelining with and without data hazards to analyze that 
why it is needed to remove data hazards and what is the impact of 
data hazards on pipelining ideal performance. Because due to data 
hazards processing of instructions cannot be done correctly and 
consumes more time. Data hazards can occur due to several reasons 
and we need to deal with each kind of reason that can cause data 
hazards in order to remove data hazards effectively. If reasons of 
their occurrence are not known then data hazards can be hard to 
solve and even lead to serious damage or performance issues. 

3.1 REASONS FOR DATA HAZARD OCCURENCE 

Data hazards can occur due to several reasons. Few reasons can be 
as follows 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 7, Issue 9, September-2016                                                                                        119 
ISSN 2229-5518 

IJSER © 2016 
http://www.ijser.org 

 

1. Data hazards occur due to dependency b/w 
instructions known as data dependence:- It is occurs 
when an instruction are relay on other instruction 
results like in one stage instruction uses the result of 
an instruction that is under processing  in previous 
stage, that is call Data dependence. 

 

2. Data hazards occur when data is read, written or 
overwritten incorrectly. 

3. Data hazards occur when instructions try to access 
data at wrong time before it is available of after it had 
been overwritten 

4. Data hazard can also occur when two or more 
simultaneous instructions conflict  

5. Data hazards can occur due to concurrent execution of 
instructions. 

6. Data hazards occur due to unavailability of required 
piece of data due to failure of scheduling. 

7. Data hazards can occur on instruction decode stage 
one tries to read a register value and exactly same 
time other instruction at Write back stage tries to 
write that register.   

8. Data hazards occur because data is not available when 
and where it is required. 

9. Data hazards also occur in pipelining because of 
execution of multiple instructions at the same time. 
Due to overlapping of instructions there are more 
chances of occurrence of hazards in pipeline as 
compare to non-pipelining where only one instruction 
is executed at a time. Once an instruction execution is 
completed then the other instruction execution starts.  

We need to handle data hazards effectively because 
ignoring data hazards may lead to race condition or 
race hazard. 

3.2 RESOLVING PIPELINING COMPLICATIONS (DATA 
HAZARDS) 

In order to resolve or remove data hazards effectively we can follow 
these effective ways. 

1. Data hazards occur due to data dependence b/w instruction 
so in order to resolve data hazards we must eliminate data 
dependency 

2. To elimination of hazards it is requires that some of the 
instructions that are in pipeline and ready for execution are 
allowed to proceed while other are delayed that are depend 
or produce unacceptable results. 

3. Other way to eliminate data hazards is uses of pipeline 
stalls between some instructions. To block some 
instruction enter to pipeline while other later instruction 
complete, Stalls, NOP are inserted between two pipeline 
stages. Inserting stalls will remove dependency b/w the 
instructions but stalls can decrease the ideal performance. 

4. Data hazards can be eliminated by using forwarding or 
bypassing. 

5. Proper synchronization of instructions is required to deal 
with data hazards effectively 

6. Data hazards can be removed easily by reordering of 
instruction but there is need to be careful about instruction 
re-ordering technique because reordering of instruction to 
avoid one type of hazard can become cause of other 
hazards as will. 

7. False data dependencies b/w instructions can be removed 
by using register renaming technique. 

3.3 Explanation with Examples: 

In this stage we will discuss how to effectively remove data hazards 
in pipelined instruction with the help of examples. 

1. Instructions Reordering: 

Re-ordering technique is very simple and efficient way to remove 
some Data hazards that occur during execution instruction in 
pipelined. In many cases occur where reordering may affect the 
execution because some time order of the execution matter. 
Following is an example of instruction containing data hazard or 
data dependency 

Data Hazard Example: 

I : 8  R7  R7
II : R7  8  R3 
III : R4  R5 –  R6

← ×
← +
←

R
R  

There exists dependency b/w instruction I and instruction II because 
value of register R1 become invalid during pipelined execution and 
this dependency can be eliminated very efficiently by re-ordering 
technique as follows. 

Re-ordered Instructions: 

I : 8  R7  R7
II : R4  R5 –  R6
III : R7  8  R3 

← ×
←
← +

R

R
 

Now each instruction can proceed independently without any 
dependency. 

Data Hazard Example:  

Here is another example that has data hazard we try to remove that 
hazard with re-ordering.  

( )

( )

I : LW 4,  0 R6
II : ADD R1,  4,  R3
III : LW R2,  4 R6

R
R  

In this example here exist dependence b/w first of two instructions 
because both are depended on register R4. Re-ordering can be done 
as follows to remove data hazard in the instructions. 
Re-ordered Instructions: 

( )
( )

I : LW 4,  0 R6

II : LW R2,  4 R6
III : ADD R1,  4,  R3

R

R
 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 7, Issue 9, September-2016                                                                                        120 
ISSN 2229-5518 

IJSER © 2016 
http://www.ijser.org 

 

Later instruction execute between depended instructions now the 
instructions are free from data hazards or any kind of dependency. 
 

2. Data Forwarding or bypassing:  

Data forwarding also known as bypassing is an efficient way to 
solve data hazards in pipelined instruction execution. In the data 
forwarding or bypassing technique, normal processor is updated 
with special hardware. This technique the result of one stage is 
forward before complete execution of particular instruction. Where 
the result is require it is directly pass to that pipeline stage. In the 
forwarding there is no restriction from which stage data is transfer 
to next every next stage. For example data is passed from EX/MEM 
pipeline register to ALU stage of other pipeline or data is forward 
through instruction decode stage to instruction execution stage 
directly.  

Example:  

I : ADD ,  R2,  R1
II :SUB R4, ,R5

R3
R3

 

In this example here is a dependency between ADD and SUB 
instruction. In the 1st instruction register R3 is written and I the 2nd 
instruction register R3 is read here hazard occur if instruction II is 
complete before 1st instruction.   

 

 
Diagram 7: Data Hazard Solution - Forwarding 

First instruction will be in executing stage when second instruction 
will be decoded. Although the destination operand and source 
operand of both instruction is same. So remove this hazard data is 
forward from the EX/MEM pipeline register of ADD instruction to 
Sub instruction ALU stage.  

3. Pipeline Stalls 

Data hazards can also be removed by inserting stalls or alter the 
normal flow of execution. Stalls are inserted to skip one stall cycle 
and instruction is waiting until other same instruction or depended 
instruction complete or data hazard is chance is leave. The simplest 
way to fix the hazard is to stall the pipeline. Stalling involves 
blocking flow of instructions until the result is ready to be used. 

 
Diagram 8: Pipeline Stall 

4. Compiler based Scheduling: 

Compiler based scheduling is also a technique that is used to 
remove hazard efficiently. Compiler first detects the Hazards then 
analyzes the instruction where dependencies or data hazard occur, 
NOP or bubbles are inserted by the compiler between these 
instructions that has dependencies.  

Example: 

Here is an example of compiler based scheduling technique. 

( )

( )

I : LW 2,  0 R4
II : MUL 2,  R2,  R2
III :SW 2,  0 R4

R
R

R
 

In this example many dependencies exist, compiler inserts bubbles 
or no operation instruction as follows. 

( )

( )

I : LW 2,  0 R4
NOP
II : MUL 2,  R2,  R2
NOP
NOP
III :SW 2,  0 R4

R

R

R

 

So by inserting NOPs data hazards can be solved easily. 
 

5. Register Renaming: 
Pipelined issue of Data hazards can be solved through register 
renaming that is used to remove false data dependencies b/w 
instructions in running state. Register operands of instructions are 
renamed. Register renaming can reduce the impact of WAR and 
WAW dependencies. WAR and WAW both are data hazards. 
 
3.4 DETECTION AND CORRECTION OF DATA 

HAZARDS 
Detection of data hazard is not a complex as it is complex to remove 
or correction. The simplest technique is when the destination 
register and the source register of another instruction are same so 
there is a hazard or dependencies. The easy way to handle this 
situation is that the dependent instruction wait for other instruction 
on which it depends gets completed first. Stall or NOP is inserted 
between depended instructions. Data forwarding is another 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 7, Issue 9, September-2016                                                                                        121 
ISSN 2229-5518 

IJSER © 2016 
http://www.ijser.org 

 

technique that before completion of instruction Data is forwarded to 
next instruction from the stage where it is available. Hardware based 
solution to hazards is more efficient because compiler based 
solution to hazards is complex, expensive and inefficient. 

 
3.5 COMPARISON 
If we compare pipelining execution technique with data hazards and 
pipelining execution technique without data hazards then it will be 
clear to say that data hazards negatively impact pipelining 
performance and it is necessary to detect and correct data hazards 
for smooth and effective execution of pipeline. Comparison is given 
in the form of table as follows. 
 
Table 1: Comparison of Pipelined execution with and without data 
hazards 
 

With data hazards Without data hazards 
Data dependency b/w 
instructions 

No data dependency 

Data is read, written or 
overwritten incorrectly 

Data is read, written and 
overwritten correctly. 

Slow processing Fast processing 
Race condition can occur No race condition 
Performance reduction Ideal Performance 
Data is unavailable when and 
where it is needed. 

Data is available when and 
where it is needed. 

 

4 CONCLUSION 
The purpose of our research paper is to give a complete analysis of 
the pipelining instruction processing. In the related work part we try 
to give complete discretion of the topic and with the help of 
example we explain the pipelined and without pipelined execution 
of work. Pipelining give us a way to efficient use of processor in 
various instruction, where number of instruction is large. Large 
instruction is quickly execute a pipelined order but there are many 
issues behind pipelined processing that effect the execution speed of 
the pipelined processor. I.e. data hazards, structural hazards, control 
hazards disturb the smooth execution of pipeline. Data hazards can 
disturb the normal executions of pipelining and can be considered as 
an obstacle that negatively affects pipelining performance. So if 
these data hazard cannot be handled properly it posts many 
performance issues on execution speed. Because pipelined 
executions mean speedup the processor if that goal is not complete 
then pipelining is failed. For that purpose we need to first detect 
data hazard because without detection no other process or correcting 
technique is used. There are many technique that we discuss in 
analysis, In order to remove data hazards. We can delay instruction 
for some time and insert stall/NOP between instructions that has any 
dependencies and reordering is best way to remove data hazards. 
Next technique that we discuss is data forwarding to next stage each 
stage of the pipeline without completion of first instruction. Other 
technique of hazard removing is hardware based; processor up 
gradation, a new type of hardware is added to processor that is 
called Compiler based solution. But it is complex and expensive 
than other technique like forwarding or bypassing. Stalling is simple 
way to fix data hazards but it can waste processing time by nothing 
while waiting for the result and some processing power wasted due 
to stalls but there are many ways available that reduce the stalls. 
Although it removes dependency b/w instructions and solves data 

hazards but ideal performance of pipelining may slow down. So we 
need to be careful about dealing with hazards because removing one 
kind of hazard may cause another hazard. Use of ineffective way to 
deal with hazards can also cause problems. 
 
Acknowledgements 

 
Our special praise to Hazrat Muhammad (PBUH) from the 
deepest core of my heart is forever a model of guidance and 
knowledge for the whole mankind. The very special entity Allah has 
brought into our lives, whose saying learns from cradle to grave, 
awakened the strong desire in us to undertake this course of study 
write up of this manuscript. 
We would like to express our special thanks of gratitude to our 
course teacher Dr. M. Ashraf Chughtai. Who gave us the golden 
opportunity to do this wonderful paper on the topic “How Data 
Hazards can be removed effectively”, which also helped us in 
doing a lot of Research and we came to know about so many new 
things. His knowledge about research helped us much in planning 
this paper. His critical suggestions helped shaped and consequently 
complete this paper. We really thankful to them 

REFERENCE 
[1] J. Flynn, Michael. Computer architecture: Pipelined and parallel processor 

design”, Jones & Bartlett Learning, 1995. 

[2] Godse, A.P. Godse, D.A. “Computer Architecture- Advanced treatments 
for pipelining”, 2010. 

[3] Matravers, J. “Introduction to computer systems architecture and 
programming” 2011. 

[4] Abd-El-Barr, Mostafa, El-Rewini, Hesham. “Advanced computer 
architecture and parallel processing “2005. 

[5] Hwang, Kai. Jotwani, Naresh. “Advanced computer architecture”: A 
beginner guide 2nd Edition 2006. 

[6] Stalling, Williams. “Computer organization and architecture: dealing with 
pipeline hazards”, 8th Edition, 2006. 

[7] Burrell, Mark. “Fundamentals of computer architecture –Pipeline 
processing” 2004. 

[8] John P. Shen and Mikko H. Lipasti, Modern Processor Design: 
Fundamentals of Superscalar Processors, (2004), ISBN 0070570647. 

[9] J. L. Hennessy et al. Computer Architecture: A Quantitative Approach, 
“Pipelining basics,” Morgan Kaufmann May 2002. 

[10] P. Dubey, M. Flynn. “Optimal Pipelining in J. Parallel and Distributed 
Computing”.1990. 

[11] V. Zyuban, D. Brooks, V. Srinivasan, M. Gschwind, P. Bose, P. Strenski, 
P. Emma Integrated “Analysis of Power and Performance for Pipelined 
Microprocessors”. IEEE Transactions on Computer 2004. 

[12] Patterson, David: Hennessy, John (2009). Computer Organization and 
Design 4th Edition, “Pipelining Data Hazards” Morgan Kaufmann 
ISBN 978-0-12-374493-7. 

[13] Patterson, David: Hennessy, John (2011). Computer Architecture: A 
Quantitative Approach 5th Edition. “Pipelining Performance Issues” 
Morgan Kaufmann ISBN 978-0-12-383872-8. 

 

IJSER

http://www.ijser.org/

	2 Related Work 
	3 Analysis
	4 Conclusion
	Reference



